2021
DOI: 10.1016/j.cose.2020.102166
|View full text |Cite
|
Sign up to set email alerts
|

Catch them alive: A malware detection approach through memory forensics, manifold learning and computer vision

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
43
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 81 publications
(45 citation statements)
references
References 14 publications
0
43
0
2
Order By: Relevance
“…Observe que Zero 2 -SMELL e UMAP estimam um novo espac ¸o de representac ¸ão para classificar malware desconhecido. Assim, além do nosso trabalho, apenas UMAP [Bozkir et al 2021] também é capaz de realizar ZSL sem outras adaptac ¸ões.…”
Section: Resultsunclassified
See 1 more Smart Citation
“…Observe que Zero 2 -SMELL e UMAP estimam um novo espac ¸o de representac ¸ão para classificar malware desconhecido. Assim, além do nosso trabalho, apenas UMAP [Bozkir et al 2021] também é capaz de realizar ZSL sem outras adaptac ¸ões.…”
Section: Resultsunclassified
“…Abordagens que podem classificar malwares desconhecidos (que não estavam no conjunto de treinamento) são promissoras para essa tarefa. [Bozkir et al 2021] estima uma nova representac ¸ão dos dados com base em uma transformac ¸ão linear para reduc ¸ão de dimensão (chamada UMAP) no domínio do problema e avalia sua contribuic ¸ão para problemas de detecc ¸ão de malware desconhecidos (ZSL).…”
Section: Trabalhos Relacionadosunclassified
“…Various machine learning models were used and compared. Note that other lesser dataset includes Malimg [8], MaleVis [9], Dumpware10 [10], and Virus-MNIST [11]. Most of the dataset have varying sizes except for Virus-MNIST which have a size of 32x32x1.…”
Section: A Related Workmentioning
confidence: 99%
“…Bozkir et al [56] proposed a new memory dumping and computer vision-base method to detect malware in memory even they do not exist on hard drive using MaleVi…”
Section: About the Datasetmentioning
confidence: 99%
“…The measured accuracy rates are higher than those of known methods. Bozkir et al [56] proposed a new memory dumping and computer vision-based method to detect malware in memory even they do not exist on hard drive using MaleVis dataset. The state of the art manifold learning and dimension reduction technique named UMAP was used for the first time in the problem domain for better discrimination.…”
Section: Data Collection About the Datasetmentioning
confidence: 99%