2018
DOI: 10.14419/ijet.v7i3.14.16899
|View full text |Cite
|
Sign up to set email alerts
|

Cautionary Sign Analysis of Traffic Sign Data-Set Using Supervised Spiking Neuron Technique

Abstract: In this paper, 19 cautionary traffic signs were selected as a database and 3 types of conditions have been proposed. The conditions are 5 different time of image taken; hidden region and anticlockwise rotation are all the experiments design that will shows all the errors in producing the it’s mean value and the performance of traffic sign recognition. Initial hypothesis was made as the error will become larger as the interruption getting bigger. Based on the results of the five-different time of image taken, t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?