Human mobility models typically produce mobility data to capture human mobility patterns individually or collectively based on real-world observations or assumptions, which are essential for many use cases in research and practice, e.g., mobile networking, autonomous driving, urban planning, and epidemic control. However, most existing mobility models suffer from practical issues like unknown accuracy and uncertain parameters in new use cases because they are normally designed and verified based on a particular use case (e.g., mobile phones, taxis, or mobile payments). This causes significant challenges for researchers when they try to select a representative human mobility model with appropriate parameters for new use cases. In this paper, we introduce a MObility VERification framework called MOVER to systematically measure the performance of a set of representative mobility models including both theoretical and empirical models based on a diverse set of use cases with various measures. Based on a taxonomy built upon spatial granularity and temporal continuity, we selected four representative mobility use cases (e.g., the vehicle tracking system, the camera-based system, the mobile payment system, and the cellular network system) to verify the generalizability of the state-of-the-art human mobility models. MOVER methodically characterizes the accuracy of five different mobility models in these four use cases based on a comprehensive set of mobility measures and provide two key lessons learned: (i) For the collective level measures, the finer spatial granularity of the user cases, the better generalization of the theoretical models; (ii) For the individual-level measures, the lower periodic temporal continuity of the user cases, the theoretical models typically generalize better than the empirical models. The verification results can help the research community to select appropriate mobility models and parameters in different use cases.