Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer disease (AD) and likely contributes to neuropathology through various pathways. Here we report that the intracellular trafficking of apoE4 is impaired in Neuro-2a cells and primary neurons, as shown by measuring fluorescence recovery after photobleaching. In Neuro-2a cells, more apoE4 than apoE3 molecules remained immobilized in the endoplasmic reticulum (ER) and the Golgi apparatus, and the lateral motility of apoE4 was significantly lower in the Golgi apparatus (but not in the ER) than that of apoE3. Likewise, the immobile fraction was larger, and the lateral motility was lower for apoE4 than apoE3 in mouse primary hippocampal neurons. ApoE4 with the R61T mutation, which abolishes apoE4 domain interaction, was less immobilized, and its lateral motility was comparable with that of apoE3. The trafficking impairment of apoE4 was also rescued by disrupting domain interaction with the small-molecule structure correctors GIND25 and PH002. PH002 also rescued apoE4-induced impairments of neurite outgrowth in Neuro-2a cells and dendritic spine development in primary neurons. ApoE4 did not affect trafficking of amyloid precursor protein, another AD-related protein, through the secretory pathway. Thus, domain interaction renders more newly synthesized apoE4 molecules immobile and slows their trafficking along the secretory pathway. Correcting the pathological structure of apoE4 by disrupting domain interaction is a potential therapeutic approach to treat or prevent AD related to apoE4.The three isoforms of human apoE (apoE2, apoE3, and apoE4) differ at amino acid positions 112 or 158 or both (1, 2). ApoE4 is the major genetic risk factor for Alzheimer disease (AD) 2 (3-5), and apoE4 carriers account for 65-80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis (6). Two biophysical properties that distinguish apoE4 from the other isoforms likely hold the key to a mechanistic understanding of its association with AD. First, apoE4 is more unstable and tends to form a molten globule state (7,8). Second, the amino-terminal domain (amino acids 1-191) of apoE4 interacts with its carboxyl-terminal domain (amino acids 223-299) (9, 10). This domain interaction occurs predominantly in apoE4, in which positively charged Arg-112 repels the side chain of Arg-61 in the amino-terminal domain, allowing the formation of a salt bridge between Arg-61 and the negatively charged Glu-255 in the carboxyl-terminal domain (9, 10). Domain interaction occurs to a significantly lesser extent in apoE2 and apoE3 because both have Cys-112, resulting in a different conformation of Arg-61 (11). Importantly, only human apoE has Arg-61; the 17 other species in which the apoE gene has been sequenced have 11). Mutation of Arg-61 to Thr in apoE4 prevents domain interaction, converting apoE4 to an apoE3-like molecule (9 -12). ApoE4 domain interaction occurs on lipoprotein particles in vitro in human plasma, in cultured Neuro-2a cells, and in Arg-61 knock-in mice, in wh...