The objective of this study was to determine whether the porcine mammary gland responds to increasing dietary CP concentration through changes in AA arteriovenous difference (a-v). Sixteen Landrace x Yorkshire lactating sows were provided ad libitum access to one of four isocaloric diets varying in CP concentration (7.8, 13.0, 18.2, and 23.5 %; as-fed basis). Litters were adjusted to 11 pigs within 48 h of birth. Sows were fitted with catheters in the carotid artery and main mammary vein on d 4. On d 10, 14, 18, and 22 of lactation, arterial and venous blood samples were obtained every 30 min over 6 h. Milk yield was estimated on d 11 and 21 using the D2O dilution technique. Final litter sizes on d 21 were 10.3, 11, 9.5, and 11 piglets for sows fed the 7.8, 13.0, 18.2, and 23.5% CP diets, respectively. Piglet ADG tended (P = 0.088) to increase with increasing dietary CP concentration and were 186, 221, 220, and 202 g for sows fed the 7.8, 13.0, 18.2, and 23.5% CP diet, respectively. Daily total milk yield on d 21 (kg milk/d) tended (P = 0.099) to increase, and average milk yield per nursed piglet (kg of milk-pig(-1)d(-1)) increased (P < 0.05) with increasing CP concentration and were, on a per-piglet basis, 0.95, 1.19, 1.14 and 1.13 kg of milk/d for the 7.8, 13.0, 18.2, and 23.5% CP diets, respectively. As dietary CP increased from 7.8 to 23.5%, isoleucine and leucine a-v increased linearly only (linear, P < 0.01); all other AA a-v increased, reached a maximum in sows fed 18.2% CP, and decreased thereafter in sows fed 23.5% CP (quadratic, from P = 0.10 to P < 0.05). Amino acid uptake by the entire udder and by each gland increased (linear, P < 0.05) with increasing dietary CP. Arteriovenous differences response to increasing day of lactation varied among AA, from no change for histidine, isoleucine, lysine, methionine, tryptophan, and valine, to a linear trend increase for arginine (P = 0.055), leucine (P = 0.064), phenylalanine (P = 0.101), and threonine (P = 0.057). In summary, for the majority of AA, a-v increased with increasing dietary CP concentration from 7.8 to 18.2%, but decreased when CP concentration exceeded 18.2%. In contrast, mammary AA uptake, piglet ADG and milk yield per pig increased linearly with increasing dietary CP, suggesting a coordinated regulation between AA delivery and transport to meet the demand for milk yield.