Radio continuum observations of external galaxies provide us with an excellent outside view on the distribution of cosmic-ray electrons in the disc and halo. In this review, we summarise the current state of what we have learned from modelling such observations with cosmic-ray transport, paying particular attention to the question to what extent we can exploit radio haloes when studying galactic winds. We have developed the user-friendly framework spinnaker to model radio haloes with either pure advection or diffusion, allowing us to study both diffusion coefficients and advection speeds in nearby galaxies. Using these models, we show that we can identify galaxies with winds using both morphology and radio spectral indices of radio haloes. Advective radio haloes are ubiquitous, indicating that already fairly low values of the star formation rate (SFR) surface density ($\Sigma_{ \mathrm{SFR}}$
Σ
SFR
) can trigger galactic winds. The advection speeds scale with SFR, $\Sigma_{\mathrm{SFR}}$
Σ
SFR
, and rotation speed as expected for stellar feedback-driven winds. Accelerating winds are in agreement with our radio spectral index data, but this is sensitive to the magnetic field parametrisation, so that constant wind speeds cannot be ruled out either. The question to what extent cosmic rays can be a driving force behind winds is still an open issue and we discuss only in passing how a simple iso-thermal wind model could fit our data. Nevertheless, the comparison with inferences from observations and theory looks promising with radio continuum offering a complementary view on galactic winds. We finish with a perspective on future observations and challenges lying ahead.