The effort to achieve the sustainable farming system in arable soil led to the intensive search for a new solution but an inspiration can also be found in the application of traditional methods of soil fertility improvement as it is shown in numerous examples in history. Recently many scientific teams have focused their attention on the evaluation of biochar effects on soil properties and crop yields. Since there are a lot of knowledge gaps, especially in explanations how biochar can affect soil organic matter (SOM) and humus substances, we aimed this study at the solution of these questions. Therefore, the objective of the experiment was to evaluate the impact of two biochar substrates (B1 – biochar blended with sheep manure, and B2 – biochar blended with sheep manure and the residue from the biogas station) at two rates (10 and 20 t ha-1) applied alone or in combination with mineral fertilizers (Urea was applied in 2018, at rate 100 kg ha-1, and Urea at rate 100 kg ha-1 + AMOFOS NP 12-52 at 100 kg ha-1 were applied in 2019) on the quantity and quality of SOM and humus of sandy soil (Arenosol, Dolná Streda, Slovakia). The results showed that application of the biochar substrates together with mineral fertilizers (MF) had more pronounced effect on the organic matter mineralization in the sandy soil which resulted in low accumulation of soil organic carbon (Corg) and labile carbon compared to biochar substrates treatments without MF. The share of humic substances in Corg significantly decreased by 16, 50, 16 and 24% in B1 at 10 t ha-1, B1 at 20 t ha-1, B2 at 10 t ha-1 and B2 at 20 t ha-1 treatments, respectively, compared to the control. A similar tendency was observed for biochar substrates treatments + MF, compared to MF control. The carbon content of humic substances (CHS) was equal to 4.40 – 5.80 g kg-1 and the biochar substrates had statistically significant influence on CHS content. On average, there was a smaller decrease of CHS in B1 at rate 10 t ha-1 than at rate 20 t ha-1 and no effect of B2 compared to control. The carbon content of fulvic acid (CFA) was 9% higher in B1 at 10 t ha-1, and 20 t ha-1, 47% higher in B2 at 10 t ha-1 and 17% higher in B2 at 20 t ha-1 compared to control. As a result of biochar substrates + MF application, the reduction in CFA was observed. The results showed a decrease of CHA : CFA ratio with association to biochar substrates alone application compared to control on one hand, and a wider of CHA : CFA ratio in biochar substrates + MF treatments in comparison to MF control on the other hand. Humus stability was increased in biochar substrates alone treatments compared to control, on the other hand, compared to MF control, the application of biochar substrates + MF resulted in a lower humus stability.