Bacterial denitrification results in the loss of fertilizer nitrogen and greenhouse gas emissions as nitrous oxides, but ecological factors in soil influencing denitrifier communities are not well understood, impeding the potential for mitigation by land management. Communities vary in the relative abundance of the alternative dissimilatory nitrite reductase genes nirK and nirS , and the nitrous oxide reductase gene nosZ ; however, the significance for nitrous oxide emissions is unclear. We assessed the influence of different long-term fertilization and cultivation treatments in a 160-year-old field experiment, comparing the potential for denitrification by soil samples with the size and diversity of their denitrifier communities. Denitrification potential was much higher in soil from an area left to develop from arable into woodland than from a farmyard manure-fertilized arable treatment, which in turn was significantly higher than inorganic nitrogen-fertilized and unfertilized arable plots. This correlated with abundance of nirK but not nirS, the least abundant of the genes tested in all soils, showing an inverse relationship with nirK . Most genetic variation was seen in nirK , where sequences resolved into separate groups according to soil treatment. We conclude that bacteria containing nirK are most probably responsible for the increased denitrification potential associated with nitrogen and organic carbon in this soil.
During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.
The benefits of biochar application are well described in tropical soils, however there is a dearth of information on its effects in agricultural temperate soils. An interesting and little explored interaction may occur in an intensive agriculture setting; biochar addition may modify the effect of commonplace N-fertilization. We conducted a field experiment to study the effects of biochar application at the rate of 0, 10 and 20 t ha
Since biochar is considered to be a significant source of carbon, in this work we have evaluated the changes in soil organic matter (SOM) and soil structure due to application of biochar and biochar with N fertilization, and have considered the interrelationships between the SOM parameters and the soil structure. The soil samples were collected from Haplic Luvisol at the locality of Dolná Malanta (Slovakia) during 2017. The field experiment included three rates of biochar application (B0-no biochar, B10-biochar at the rate of 10 t ha-1 , B20-biochar at the rate of 20 t ha-1) and three levels of N fertilization (N0-no nitrogen, N160-nitrogen at the rate of 160 kg ha-1 , N240-nitrogen at the rate of 240 kg ha-1). The rate of biochar at 20 t ha-1 caused an increase in the organic carbon (C org) content. The combination of both rates of biochar with 160 and 240 kg N ha-1 also caused an increase in C org. In the case of B20 the extractability of humic substances carbon (C HS) was 17.79% lower than at B0. A significant drop was also observed in the values of the extraction of humic acids carbon (C HA) and fulvic acids carbon (C FA) after the addition of biochar at a dose of 20 t ha-1 with 160 kg N ha-1. However, both rates of biochar had a significant effect at 240 kg N ha-1. After application of 20 t ha-1 of biochar the content of water-stable macro-aggregates (WSA ma) significantly increased compared to control. This rate of biochar also increased the mean weight diameter (MWD W) and the index of water-stable aggregates (Sw) and decreased the coefficient of vulnerability (Kv). The biochar at a rate of 20 t ha-1 with 240 kg N ha-1 the value of MWD W increased and value of Kv decreased significantly. The contents of C org and C L correlated positively with WSA ma , MWD W and Sw and negatively with WSA mi and Kv. The extraction of C HA and C FA was in negative relationship with MWD W. We conclude that the application of biochar and biochar combined with N fertilizer had a positive influence on SOM and soil structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.