Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Volatile compounds of perilla seed oils roasted at different temperatures (150-190°C) were analyzed by dynamic headspace gas chromatography-mass spectrometry. The headspace volatiles in roasted perilla seed oils (RPSO) were composed of thermally produced flavors and compounds originating from the raw perilla seeds. The roasting temperatures significantly affected the production of thermal reaction flavors. Oils from parilla seeds roasted below 170°C had relatively high concentrations of aldehydes, whereas pyrazines and furans were the predominant volatiles above 170°C. In all of the RPSO, the contents of both perilla aldehyde and perilla ketone remained almost constant and might be used to discriminate perilla seed oils from other roasted vegetable seed oils.Perilla seed [Perilla frutescens (L.) Britt.] is composed of 40-45% (w/w) oil with a high α-linolenic acid (n-3 fatty acid) content (1). Roasted perilla seed oils (RPSO) are widely used as condiment oils in Asian countries, especially in Korea and China, because of their roasted, nutty, and distinctive aromas, reminiscent of perilla aldehyde. Similar to sesame seed oils, RPSO are traditionally tailor-made by roasting, mechanical pressing, and simple refining from the raw perilla seeds. The roasting process may be a critical step for producing perilla seed oils because many aromatic compounds may be produced by the heat treatment that has an effect on the flavor quality of RPSO. Flavor profiles of RPSO are generally changed under different roasting temperatures (2). There have been no detailed reports yet, however, on the volatile components of RPSO. Hence, the objective of the present study was to identify the volatile compounds of RPSO and to investigate the effects of roasting temperature on the production of headspace volatile flavor components of RPSO. MATERIALS AND METHODS Materials.Perilla seeds were obtained from local areas in Korea. Total lipids of perilla seeds extracted with diethyl ether in a Soxhlet apparatus for 12 h were 44.5 % (w/w). Standard chemicals for identification of volatiles in gas chromatography (GC) and mass spectra were purchased from Aldrich Chemical Company (Milwaukee, WI) Sigma Chemical Co. (St. Louis, MO), and Fluka Chemie AG (Buchs, Switzerland). Iso-octane, used as a dilution solvent of standard chemicals was obtained from Fisher Scientific (Norcross, GA).Preparation of RPSO and nonroasted perilla seed oils (NPSO). Perilla seeds were washed and dried to 6.4% (w/w) moisture content prior to roasting. The seeds (400 g) were roasted at 150, 160, 170, 180, and 190°C for 3 min using a continuous and circular monolayer roasting machine (Taewhan Automatic Instrument Co., Seoul, Korea). The roasted seeds were fed into the hopper immediately to minimize heat loss and expelled with a screw-type press at 60 rpm and 500 kg/cm 2 . The barrel temperature of a press during each run was maintained at 120°C. This process produced about 120 to 125 g of oil and cakes in the form of flakes with 0.6-mm thickness. Four replications for RPSO at ea...
Volatile compounds of perilla seed oils roasted at different temperatures (150-190°C) were analyzed by dynamic headspace gas chromatography-mass spectrometry. The headspace volatiles in roasted perilla seed oils (RPSO) were composed of thermally produced flavors and compounds originating from the raw perilla seeds. The roasting temperatures significantly affected the production of thermal reaction flavors. Oils from parilla seeds roasted below 170°C had relatively high concentrations of aldehydes, whereas pyrazines and furans were the predominant volatiles above 170°C. In all of the RPSO, the contents of both perilla aldehyde and perilla ketone remained almost constant and might be used to discriminate perilla seed oils from other roasted vegetable seed oils.Perilla seed [Perilla frutescens (L.) Britt.] is composed of 40-45% (w/w) oil with a high α-linolenic acid (n-3 fatty acid) content (1). Roasted perilla seed oils (RPSO) are widely used as condiment oils in Asian countries, especially in Korea and China, because of their roasted, nutty, and distinctive aromas, reminiscent of perilla aldehyde. Similar to sesame seed oils, RPSO are traditionally tailor-made by roasting, mechanical pressing, and simple refining from the raw perilla seeds. The roasting process may be a critical step for producing perilla seed oils because many aromatic compounds may be produced by the heat treatment that has an effect on the flavor quality of RPSO. Flavor profiles of RPSO are generally changed under different roasting temperatures (2). There have been no detailed reports yet, however, on the volatile components of RPSO. Hence, the objective of the present study was to identify the volatile compounds of RPSO and to investigate the effects of roasting temperature on the production of headspace volatile flavor components of RPSO. MATERIALS AND METHODS Materials.Perilla seeds were obtained from local areas in Korea. Total lipids of perilla seeds extracted with diethyl ether in a Soxhlet apparatus for 12 h were 44.5 % (w/w). Standard chemicals for identification of volatiles in gas chromatography (GC) and mass spectra were purchased from Aldrich Chemical Company (Milwaukee, WI) Sigma Chemical Co. (St. Louis, MO), and Fluka Chemie AG (Buchs, Switzerland). Iso-octane, used as a dilution solvent of standard chemicals was obtained from Fisher Scientific (Norcross, GA).Preparation of RPSO and nonroasted perilla seed oils (NPSO). Perilla seeds were washed and dried to 6.4% (w/w) moisture content prior to roasting. The seeds (400 g) were roasted at 150, 160, 170, 180, and 190°C for 3 min using a continuous and circular monolayer roasting machine (Taewhan Automatic Instrument Co., Seoul, Korea). The roasted seeds were fed into the hopper immediately to minimize heat loss and expelled with a screw-type press at 60 rpm and 500 kg/cm 2 . The barrel temperature of a press during each run was maintained at 120°C. This process produced about 120 to 125 g of oil and cakes in the form of flakes with 0.6-mm thickness. Four replications for RPSO at ea...
Using reversed-phase high-performance liquid chromatography (RP-HPLC), the peanut protein profile was shown to be related to the maturity, drying time, and drying procedure of the peanut. Differences were seen between (a) immature and mature seeds for untreated and windrow-dried peanuts, (b) untreated and windrow-dried peanuts for immature and mature seeds, and (c) windrow- and stackpole-dried peanuts. The most pronounced HPLC peak that increased in size as the peanut matured and decreased in size with longer drying times was isolated and identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry to have a molecular weight of 62 500. Since maturity is related to the sensory quality of peanuts, this protein may be a marker for peanuts that will produce a higher quality flavor when roasted.
Because the reaction of acyloins with ammonia generates pyrazines and acyloins are not involved with Strecker degradation, this study uses acetoin (a simple acyloin, from sugar degradation) to react with amino acids to determine whether ammonia is released, leading to the formation of tetramethylpyrazine. The results show that all reactions between R-amino acids and acetoin generate not only tetramethylpyrazine but also the corresponding Strecker aldehydes. However, the reactions between -, γ-, or -amino acid and acetoin generate only tetramethylpyrazine. Quantitative analysis shows that among such reactions, both R-and -amino acids generate significantly higher amounts of tetramethylpyrazine than γ-and -amino acids. On the basis of these data, it is proposed mechanistically that R-amino acids decarbonylate to generate the reactive intermediates, 1-hydroxyamines, deamination of which leads to the formation of the Strecker aldehydes. This study demonstrates that pyrazines and Strecker aldehydes are also formed from R-amino acids and reducing sugar via deamination in addition to their formation via the well-known Strecker degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.