Abstract:Overgrazing has caused vegetation destruction and soil degradation in Leymus chinensis grassland, the widely distributed type of grassland in northern China. To restore the degraded ecosystem, grazing exclusion was implemented in 1979, 1999, and 2004. However, changes in the vegetation and soil organic carbon (SOC) in different years of grazing exclusion have not been thoroughly elucidated. This paper examines the changes in vegetation characteristics (i.e., biomass, cover, richness, degree of succession, and shannon diversity index) and SOC under free of grazing (FG), 6 years (6 GE), 11 years (11 GE), and 31 years (31 GE) of grazing exclusion plots in the Xilin River Basin, China. The results indicate that the vegetation characteristics and SOC increased during the restoration process. Both the vegetation characteristics and SOC in 6 GE did not differ significantly from FG (p > 0.05), while these indexes in 11 GE were significantly higher than in FG. The differences between the vegetation characteristics and SOC in 11 GE and those in 31 GE were not significant. To meet the tradeoff between ecosystem conservation and utilization, further studies with multi-year observation should be conducted to identify the optimal duration of grazing exclusion and the grazing exclusion time threshold in L. chinensis grassland. This study provides valuable insights into sustainable grassland management in northern China.