A procedure to be used in ion implantation calculations has been developed to determine the stopping power of an ion at low energy as a function of its effective charge. The ion effective charge accounts for screening of the ion and has been found to have considerable effect on the stopping power through its dependence on the target electron density.Steps in the procedure include: the calculation of the Fermi momentum of the target, calculation of the relative velocity between the projectile and target electron cloud, determination of the screening distance for the ion, and calculation of the proton stopping power Sp according to the density-functional formalism. The ion stopping power is then S(ZI):(Z) 2Sp,• where Z* is the ion effective charge. The procedure can be applied to semiconductors and metals. Comparisons are reported with the predictions of the Firsov and Lindhard methods which do not include any effective charge or shell structure considerations. The computer program MARLOWE has been modified to include this method for calculating the stopping power. Results in the form of implanted boron profiles in silicon will be presented.