The anomalous diffusion of ion implanted boron into silicon is shown to be a transient effect with a decay time that decreases rapidly with increasing anneal temperature. The decay time is approximately 45 min at 800 °C and decreases to the order of a second at 1000 °C. The anomalous displacement in the low concentration region is greater at low temperatures but a larger fraction of the boron is redistributed at high temperature. Sheet resistance measurements agree with the idea that the moving fraction of the boron atoms is electrically active and limited to the intrinsic carrier concentration at the anneal temperature. The activation energy for the decay of the transient is greater than that for the diffusion coefficient, which makes an appropriate rapid thermal anneal cycle an important practical process in the fabrication of shallow p-n junctions.
Ultra low energy boron implantation using cluster ions for decananometer MOSFETs AIP Conf.
Articles you may be interested inThermal anneal activation of near-surface deep level defects in electron cyclotron resonance hydrogen plasmaexposed silicon J. Vac. Sci. Technol. B 15, 226 (1997); 10.1116/1.589269 Damage and contamination in lowtemperature electron cyclotron resonance plasma etching Damage formed by electron cyclotron resonance plasma etching on a gallium arsenide surface Damage and contamination produced after electron cyclotron resonance (ECR) etching of Si using CF 4 gas has been studied using electrical characterization, Rutherford backscattering spectroscopy (RBS), secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and etch pit density measurement techniques. Due to the sman dc self-bias voltage generated across the pla..<;ma sheath, ECR etching is expected to produce low damage and contamination levels. RBS measurements show that ECR etching does indeed produce less structural damage than that produced by conventional reactive ion etching (RIE). It is found that the damage and contamination levels from an ECR etching process are actually reduced by the addition of radio frequency (rO power to the wafer. The metallic impurity levels are shown to be greatly reduced by covering the stainless steel wall of the ECR source near the resonance region with an anodized Al liner. The plasma density in the resonance region of the reactor during ECR processes is much higher than that during RIE processes. Therefore, the ECR processes produce heavy metal contamination, which is mainly from the portion of the stainless steel wall of the reactor in contact with the plasma. Schottky diodes fabricated on the etched samples exhibit high leakage currents implying some damage and/or impurities are present in the near-surface region. Relationships that exist among the generation current of the metal-oxide-silicon (MOS) capacitors, the etch pit density and the metallic impurity level were studied. Some wafers were exposed to an Ar ECR/RIE plasma to compare the effects of pure physical sputtering and ion-assisted chemical etching, as when CF" was used. A possible explanation for the observed behavior is given.
Cross sectional transmission electron microscopy (TEM) reveals an amorphous interfacial region of the order of 2 nm thick between chemical vapor deposition-(CVD) deposited polycrystalline silicon films and the single-crystal silicon substrate. The continuity of this region varies from sample to sample and plays an important role in the effects produced by subsequent heat treatment. In cases where this interfacial layer is continuous, the deposited layer remains polycrystalline. When the region is discontinuous, complete epitaxial realignment of the poly is possible. The speed of realignment depends on the implanted arsenic dose and is much greater than reported for undoped films. Various impurities are also observed at the interface and correlate with the character of the interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.