In this paper, we intensively collected atmospheric particulate matter (PM) with different diameters (size ranges: <0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2, and >7.2 μm) in Lhasa during the monsoon and non-monsoon seasons. The results clearly showed that the concentrations of PM, organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) during the non-monsoon season were much higher than the concentrations during the monsoon season. During the monsoon season, a bimodal size distribution of the OC and WSOC, which were at <0.49 μm and >7.2 μm, respectively, and a unimodal size distribution at <0.49 μm for the EC were observed. However, during the non-monsoon season, there was a trimodal size distribution of the OC and WSOC (<0.49 μm, 1.5–3.0 μm, and >7.2 μm), and a unimodal size distribution of the EC (<0.49 μm). Possible sources of the carbonaceous components were revealed by combining the particle size distribution and the correlation analysis. OC, EC, and WSOC were likely from the photochemical transformation of biogenic and anthropogenic VOC, and the incomplete combustion of biomass burning and fossil fuels at <0.49 μm, whilst they were also likely to be from various types of dust and biogenic aerosols at >7.2 μm. OC and WSOC at 1.5–3.0 μm were likely to have been from the burning of yak dung and photochemical formation. The above results may draw attention in the public and scientific communities to the issues of air quality in the Tibetan Plateau.