Nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI) are important non-destructive investigative techniques for soft matter research. Continuous advancements have not only lead to more sensitive detection, and new applications, but have also enabled the shrinking of the detectable volume of sample, and a reduction in time needed to acquire a spectrum or image. At the same time, advances in microstructuring and on-chip laboratories have also continued unabated. In recent years these two broad areas have been productively joined into what we term micro nuclear magnetic resonance (mMR), an exciting development that includes miniaturized detectors and hyphenation with other laboratory techniques, for it opens up a range of new possibilities for the soft matter scientist. In this paper we review the available miniaturization technologies for NMR and MRI detection, and also suggest a way to compare the performance of the detectors. The paper also takes a close look at chiplaboratory augmented mMR, and applications within the broad soft matter area. The review aims to contribute to a better understanding of both the scientific potential and the actual limits of mMR tools in the various interdisciplinary soft matter research fields.