Elastin polypeptides
based on -VPGVG- repeated motifs are widely
used in the production of biomaterials because they are stimuli-responsive
systems. On the other hand, glycine-rich sequences, mainly present
in tropoelastin terminal domains, are responsible for the elastin
self-assembly. In a previous study, we have recombinantly expressed
a chimeric polypeptide, named resilin, elastin, and collagen (REC),
inspired by glycine-rich motifs of elastin and containing resilin
and collagen sequences as well. Herein, a three-block polypeptide,
named (REC)
3
, was expressed starting from the previous
monomer gene by introducing key modifications in the sequence. The
choice was mandatory because the uneven distribution of the cross-linking
sites in the monomer precluded the hydrogel production. In this work,
the cross-linked polypeptide appeared as a soft hydrogel, as assessed
by rheology, and the linear un-cross-linked trimer self-aggregated
more rapidly than the REC monomer. The absence of cell-adhesive sequences
did not affect cell viability, while it was functional to the production
of a material presenting antiadhesive properties useful in the integration
of synthetic devices in the body and preventing the invasion of cells.