Adenosine 5'-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca²⁺](i)) and in the fine structure of acinar cells of rat lacrimal glands. ATP induced exocytotic structures, vacuolation and an increase in [Ca²⁺](i) in acinar cells. The removal of extracellular Ca²⁺ or the use of Ca²⁺ channel blockers partially inhibited the ATP-induced [Ca²⁺](i) increase. U73122 (an antagonist of PLC) and heparin (an antagonist of IP₃ receptors) did not completely inhibit the ATP-induced [Ca²⁺](i) increase. P1 purinoceptor agonists did not induce any changes in [Ca²⁺](i), whereas suramin (an antagonist of P2 receptors) completely inhibited ATP-induced changes in [Ca²⁺](i). A P2Y receptor agonist, 2-MeSATP, induced a strong increase in [Ca²⁺](i), although UTP (a P2Y₂,₄,₆ receptor agonist) had no effect, and reactive blue 2 (a P2Y receptor antagonist) resulted in partial inhibition. The potency order of ATP analogs (2-MeSATP > ATP >>> UTP) suggested that P2Y₁ played a significant role in the cellular response to ATP. BzATP (a P2X₇ receptor agonist) induced a small increase in [Ca²⁺](i), but α,β-meATP (a P2X₁,₃ receptor agonist) had no effect. RT-PCR indicated that P2X₂,₃,₄,₅,₆,₇ and P2Y₁,₂,₄,₁₂,₁₄ are expressed in acinar cells. In conclusion, the response of acinar cells to ATP is mediated by P2Y (especially P2Y₁) as well as by P2X purinoceptors.