Pesticides, smoke, mycotoxins, polychlorinated biphenyls, and arsenic are the most common environmental toxins and toxicants to humans. These toxins and toxicants may impact on human health at the molecular (DNA, RNA, or protein), organelle (mitochondria, lysosome, or membranes), cellular (growth inhibition or cell death), tissue, organ, and systemic levels. Formation of reactive radicals, lipid peroxidation, inflammation, genotoxicity, hepatotoxicity, embryotoxicity, neurological alterations, apoptosis, and carcinogenic events are some of the mechanisms mediating the toxic effects of the environmental toxins and toxicants. Green tea, the non-oxidized and non-fermented form of tea that contains several polyphenols, including green tea catechins, exhibits protective effects against these environmental toxins and toxicants in preclinical studies and to a much-limited extent, in clinical trials. The protective effects are collectively mediated by antioxidant, anti-inflammatory, anti-mutagenic, hepato- and neuroprotective, and anti-carcinogenic activities. In addition, green tea modulates signaling pathway including NFκB and ERK pathways, preserves mitochondrial membrane potential, inhibits caspase-3 activity, down-regulates pro-apoptotic proteins, and induces the phase II detoxifying pathway. The bioavailability and metabolism of green tea and its protective effects against environmental insults induced by pesticides, smoke, mycotoxins, polychlorinated biphenyls, and arsenic are reviewed in this paper. Future studies with emphasis on clinical trials should identify biomarkers of green tea intake, examine the mechanisms of action of green tea polyphenols, and investigate potential interactions of green tea with other toxicant-modulating dietary factors.