Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here we evaluated the impact of commonly consumed polyphenols, including green tea catechins and epigallocatechin gallates, resveratrol, and curcumin, on obesity and obesity-related-inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the AMP-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, PPAR gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor kappa B that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass, and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area, and are inconsistent about the anti-obesity impact of dietary polyphenols, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Pools of farnesyl diphosphate and other phosphorylated products of the mevalonate pathway are essential to the post-translational processing and physiological function of small G proteins, nuclear lamins, and growth factor receptors. Inhibitors of enzyme activities providing those pools, namely, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and mevalonic acid-pyrophosphate decarboxylase, and of activities requiring substrates from the pools, the prenyl protein transferases, have potential for development as novel chemotherapeutic agents. Their potentials as suggested by the clinical responses recorded in Phase I and II investigations of inhibitors of HMG CoA reductase (the statins), of mevalonic acid-pyrophosphate decarboxylase (sodium phenylacetate and sodium phenylbutyrate), and of farnesyl protein transferase (R115777, SCH66336, BMS-214662, Tipifarnib, L-778,123, and, prematurely, perillyl alcohol) are dimmed by dose-limiting toxicities. These nondiscriminant growth-suppressive agents induce G1 arrest and initiate apoptosis and differentiation, effects attributed to modulation of cell signaling pathways either by modulating gene expression, suppressing the post-translational processing of signaling proteins and growth factor receptors, or altering diacylglycerol signaling. Diverse isoprenoids and the HMG CoA reductase inhibitor, lovastatin, modulate cell growth, induce cell cycle arrest, initiate apoptosis, and suppress cellular signaling activities. Perillyl alcohol, the isoprenoid of greatest clinical interest, initially was considered to inhibit farnesyl protein transferase; follow-up studies revealed that perillyl alcohol suppresses the synthesis of small G proteins and HMG CoA reductase. In sterologenic tissues, sterol feedback control, mediated by sterol regulatory element binding proteins (SREBPs) 1a and 2, exerts the primary regulation on HMG CoA reductase activity at the transcriptional level. Secondary regulation, a nonsterol isoprenoid-mediated fine-tuning of reductase activity, occurs at the levels of reductase translation and degradation. HMG CoA reductase activity in tumors is elevated and resistant to sterol feedback regulation, possibly as a consequence of aberrant SREBP activities. Nonetheless, tumor reductase remains sensitive to isoprenoid-mediated post-transcriptional downregulation. Farnesol, an acyclic sesquiterpene, and farnesyl homologs, gamma-tocotrienol and various farnesyl derivatives, inhibit reductase synthesis and accelerate reductase degradation. Cyclic monoterpenes, d-limonene, menthol and perillyl alcohol and beta-ionone, a carotenoid fragment, lower reductase mass; perillyl alcohol and d-limonene lower reductase mass by modulating translational efficiency. The elevated reductase expression and greater demand for nonsterol products to maintain growth amplify the susceptibility of tumor reductase to isoprenoids, therein rendering tumor cells more responsive than normal cells to isoprenoid-mediated growth suppression. Blends of lovastatin, a potent nondiscriminant inh...
While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins are the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s) of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy.
Sundry mevalonate-derived constituents (isoprenoids) of fruits, vegetables and cereal grains suppress the growth of tumors. This study estimated the concentrations of structurally diverse isoprenoids required to inhibit the increase in a population of murine B16(F10) melanoma cells during a 48-h incubation by 50% (IC50 value). The IC50 values for d-limonene and perillyl alcohol, the monoterpenes in Phase I trials, were 450 and 250 micromol/L, respectively; related cyclic monoterpenes (perillaldehyde, carvacrol and thymol), an acyclic monoterpene (geraniol) and the end ring analog of beta-carotene (beta-ionone) had IC50 values in the range of 120-150 micromol/L. The IC50 value estimated for farnesol, the side-chain analog of the tocotrienols (50 micromol/L) fell midway between that of alpha-tocotrienol (110 micromol/L) and those estimated for gamma- (20 micromol/L) and delta- (10 micromol/L) tocotrienol. A novel tocotrienol lacking methyl groups on the tocol ring proved to be extremely potent (IC50, 0.9 micromol/L). In the first of two diet studies, experimental diets were fed to weanling C57BL female mice for 10 d prior to and 28 d following the implantation of the aggressively growing and highly metastatic B16(F10) melanoma. The isomolar (116 micromol/kg diet) and the Vitamin E-equivalent (928 micromol/kg diet) substitution of d-gamma-tocotrienol for dl-alpha-tocopherol in the AIN-76A diet produced 36 and 50% retardations, respectively, in tumor growth (P < 0.05). In the second study, melanomas were established before mice were fed experimental diets formulated with 2 mmol/kg d-gamma-tocotrienol, beta-ionone individually and in combination. Each treatment increased (P < 0.03) the duration of host survival. Our finding that the effects of individual isoprenoids were additive suggests the possibility that one component of the anticarcinogenic action of plant-based diets is the tumor growth-suppressive action of the diverse isoprenoid constituents of fruits, vegetables and cereal grains.
Two novel tocotrienols were isolated from stabilized and heated rice bran, apart from the known alpha-, beta-, gamma-, and delta-tocopherols and tocotrienols. These new tocotrienols were separated by HPLC, using a normal phase silica column. Their structures were determined by ultraviolet, infrared, nuclear magnetic resonance, circular dichroism, and high-resolution mass spectroscopies and established as desmethyl tocotrienol [3, 4-dihydro-2-methyl-2-(4,8,12-trimethyltrideca-3'(E),7'(E), 11'-trienyl)-2H-1-benzopyran-6-ol] and didesmethy tocotrienol [3, 4-dihydro-2-(4,8,12-trimethyltrideca-3'(E),7'(E), 11'-trienyl)-2H-1-benzopyran-6-ol]. These tocotrienols significantly lowered serum total and LDL cholesterol levels and inhibited HMG-CoA reductase activity in chickens. They had much greater in vitro antioxidant activities and greater suppression of B16 melanoma cell proliferation than alpha-tocopherol and known tocotrienols. Results indicated that the number and position of methyl substituents in tocotrienols affect their hypocholesterolemic, antioxidant, and antitumor properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.