Feathers, like hairs, first appear as primordia consisting of an epidermal placode associated with a dermal condensation that is necessary for the continuation of their differentiation. Previously, the BMPs have been proposed to inhibit skin appendage formation. We show that the function of specific BMPs during feather development is more complex. BMP2 and BMP7, which are expressed in both the epidermis and the dermis, are involved in an antagonistic fashion in regulating the formation of dermal condensations, and thus are both necessary for subsequent feather morphogenesis. BMP7 is expressed earlier and functions as a chemoattractant that recruits cells into the condensation, whereas BMP2 is expressed later, and leads to an arrest of cell migration, likely via its modulation of the EIIIA fibronectin domain and α4 integrin expression. Based on the observed cell proliferation, chemotaxis and the timing of BMP2 and BMP7 expression, we propose a mathematical model, a reaction-diffusion system, which not only simulates feather patterning, but which also can account for the negative effects of excess BMP2 or BMP7 on feather formation.