Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse event of several first-line chemotherapeutic agents, including platinum compounds, taxanes, vinca alkaloids, thalidomide, and bortezomib, which negatively affects the quality of life and clinical outcome. Given the dearth of effective established agents for preventing or treating CIPN, and the increasing number of cancer survivors, there is an urgent need for the identification and development of new, effective intervention strategies that can prevent or mitigate this debilitating side effect. Prior failures in the development of effective interventions have been due, at least in part, to a lack of mechanistic understanding of CIPN and problems in translating this mechanistic understanding into testable hypotheses in rationally-designed clinical trials. Recent progress has been made, however, in the pathogenesis of CIPN and has provided new targets and pathways for the development of emerging therapeutics that can be explored clinically to improve the management of this debilitating toxicity. This review focuses on the emerging therapeutics for the prevention and treatment of CIPN, including pharmacological and non-pharmacological strategies, and calls for fostering collaboration between basic and clinical researchers to improve the development of effective strategies.