2012
DOI: 10.1016/j.jmps.2012.06.008
|View full text |Cite
|
Sign up to set email alerts
|

Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices

Abstract: a b s t r a c tIn continuum mechanics, the non-centrosymmetric micropolar theory is usually used to capture the chirality inherent in materials. However, when reduced to a two dimensional (2D) isotropic problem, the resulting model becomes non-chiral. Therefore, influence of the chiral effect cannot be properly characterized by existing theories for 2D chiral solids. To circumvent this difficulty, based on reinterpretation of isotropic tensors in the 2D case, we propose a continuum theory to model the chiral e… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

6
111
0
2

Year Published

2013
2013
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 178 publications
(119 citation statements)
references
References 31 publications
6
111
0
2
Order By: Relevance
“…The wave mechanism of the EMM with chiral microstructure was interpreted and can be found in ref. 31.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The wave mechanism of the EMM with chiral microstructure was interpreted and can be found in ref. 31.…”
Section: Resultsmentioning
confidence: 99%
“…2a. The difference can be attributed to the strong anisotropy of the current microstructural design, which cannot be exactly captured by using the effective isotropic medium 31 . For the chiral topology, the number of the chirally distributed ribs, N r , is an important parameter for the global property of the EMM with chiral microstructure.…”
Section: Resultsmentioning
confidence: 99%
“…The nodes may be hollow or solid in the real cases, but in this paper, they are assumed rigid while only the ligament (treated as a slender beam) is considered as deformable [1,14,16,21]. With this assumption, the nodes may be replaced by the material points (B and D in Figure 2) whose translational and rotational motions are related to the elastic ligament.…”
Section: Stiffness Matrix Of the Cbementioning
confidence: 99%
“…Одним из примеров таких свойств является свойство ауксетичности, то есть свойство материала расширяться в поперечном направ-лении при его растяжении. Все более активно обсужда-ются вопросы моделирования, особенности поведения хиральных структур, возможности их практического применения [1][2][3]. Настоящая статья представляет обо-бщение известных результатов и некоторые новые ре-зультаты исследований авторов в этом направлении.…”
Section: Introductionunclassified