To date, cancer continues to be one of the deadliest diseases. Current therapies are often ineffective, leading to the urgency to develop new therapeutic strategies to improve treatments. Conventional chemotherapeutics are characterized by a reduced therapeutic efficacy, as well as them being responsible for important undesirable side effects linked to their non-specific toxicity. In this context, natural nanomaterials such as clayey mineral nanostructures of various shapes (flat, tubular, spherical and fibrous) with adjustable physico-chemical and morphological characteristics are emerging as systems with extraordinary potential for the delivery of different therapeutic agents to tumor sites. Thanks to their submicron size, high specific surface area, high adsorption capacity, chemical inertia and multilayer organization of 0.7 to 1 nm-thick sheets, they have aroused considerable interest among the scientific community as nano systems that are highly biocompatible in cancer therapy. In oncology, the nano-clays usually studied are halloysite, bentonite, laponite, kaolinite, montmorillonite and sepiolite. These are multilayered minerals that can act as nanocarriers (with a drug load generally between 1 and 10% by weight) for improved stabilization, efficient transport and the sustained and controlled release of a wide variety of anticancer agents. In particular, halloysite, montmorillonite and kaolinite are used to improve the dissolution of therapeutic agents and to delay and/or direct their release. In this review, we will examine and expose to the scientific community the extraordinary potential of nano-clays as unique crystalline systems in the treatment of cancer.