Covalent conjugation of (bis)phosphonate group-containing molecules, sodium Alendronate (Aln) and 3-AminoropylPhosphoric Acid (ApA), to Cellulose nanocrystals (CNCs) was performed via oxidation/Shiff-base reaction. Further fluorescent labelling with Rhodamine B Iso ThioCyanate (RBITC) was performed to follow CNCs interaction and potential internalization with/in human osteoblasts by confocal microscopy. Complementary analyses were applied to identify the conjugation (Atenuated Total Reflectance-Fourier Transform Infrared and UV-VIS spectroscopies), physico-chemical (Dynamic Light Scattering and Nanoparticle Tracking Analysis) and morphological (Transmission Electron Microscopy) features of native and ApA/Aln-modified CNCs in physiologically relevant environments (Phosphate Buffer Saline, Advanced Dulbecco's Modified Eagle Medium). While conjugation did not affect the CNCs' size, the RBITC-labelling promotes their aggregation. Faster (1 h vs. 2 h) uptake by osteoblasts of RBITCCNCoxAln, compared to RBITC-CNCoxApA, and no-internalization (in 24 h) of native RBITTC-CNC, indicate a higher affinity of Aln-modified CNCs to the cells, while all CNCs (in 0.25-0.06 wt%) promote the cell growth. Aln/Apa-modified CNCs shows high potential in drug-delivery for bone therapies, and theranostics.