World is facing numerous environmental challenges, one of them being the increasing pollution both in the atmosphere and landfi lls. After the goods have been used, they are either buried or burnt. Both ways of disposal are detrimental and hazardous to the environment. The term biodegradation is becoming more and more important, as it converts materials into water, carbon dioxide and biomass, which present no harm to the environment. Nowadays, a lot of research is performed on the development of biodegradable polymers, which can "vanish" from the Earth surface after being used. In this respect, this research work was conducted in order to study the biodegradation phenomenon of cellulosic and non-cellulosic textile materials when buried in soil, for them to be used in our daily lives with maximum effi ciency and after their use, to be disposed of easily with no harmful eff ects to the environment. This research indicates the time span of the use life of various cellulosic and non-cellulosic materials such as cotton, jute, linen, fl ax, wool when used for the reinforcement of soil. The visual observations and applied microscopic methods revealed that the biodegradation of cellulose textile materials proceeded in a similar way as for non-cellulosic materials, the only difference being the time of biodegradation. The non-cellulosic textile material (wool) was relatively more resistant to microorganisms due to its molecular structure and surface.
Cyclodextrins (CDs) can form inclusion complexes with a wide variety of molecules making them very attractive in different areas, such as pharmaceutics, biochemistry, food chemistry and textile. In this communication we will report on the physico-chemical characterization of cellulose modified with CDs by means of infra-red spectroscopy (FTIR), cross polarization magic angle spinning solid state nuclear magnetic resonance (CP-MAS NMR), polarized optical microscopy (POM) and thermal gravimetric analysis (TGA). Both CP-MAS NMR and FTIR indicate that CDs are chemically attached to cellulose backbone through the formation of ester bonds. Furthermore, the CD-grafted cellulose was dissolved in a "superphosphoric" acid solution but, despite the increase of hydrophilicity due to the modification, POM revealed that grafted cellulose was less soluble when compared to the unmodified polymer. The formation of a complex CD-cellulose network is suggested.
Covalent conjugation of (bis)phosphonate group-containing molecules, sodium Alendronate (Aln) and 3-AminoropylPhosphoric Acid (ApA), to Cellulose nanocrystals (CNCs) was performed via oxidation/Shiff-base reaction. Further fluorescent labelling with Rhodamine B Iso ThioCyanate (RBITC) was performed to follow CNCs interaction and potential internalization with/in human osteoblasts by confocal microscopy. Complementary analyses were applied to identify the conjugation (Atenuated Total Reflectance-Fourier Transform Infrared and UV-VIS spectroscopies), physico-chemical (Dynamic Light Scattering and Nanoparticle Tracking Analysis) and morphological (Transmission Electron Microscopy) features of native and ApA/Aln-modified CNCs in physiologically relevant environments (Phosphate Buffer Saline, Advanced Dulbecco's Modified Eagle Medium). While conjugation did not affect the CNCs' size, the RBITC-labelling promotes their aggregation. Faster (1 h vs. 2 h) uptake by osteoblasts of RBITCCNCoxAln, compared to RBITC-CNCoxApA, and no-internalization (in 24 h) of native RBITTC-CNC, indicate a higher affinity of Aln-modified CNCs to the cells, while all CNCs (in 0.25-0.06 wt%) promote the cell growth. Aln/Apa-modified CNCs shows high potential in drug-delivery for bone therapies, and theranostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.