Scrub typhus and spotted fever rickettsioses (SFR) are understudied, vector-borne diseases of global significance. Over 1 billion individuals are at risk for scrub typhus alone in an endemic region, spanning across eastern and southern Asia to Northern Australia. While highly treatable, diagnostic challenges make timely antibiotic intervention difficult for these diseases. Delayed therapy may lead to severe outcomes affecting multiple organs, including the central nervous system (CNS), where infection and associated neuroinflammation may be lethal or lead to lasting sequelae. Meningitis and encephalitis are prevalent in both scrub typhus and SFR. Additionally, case reports detailing focal neurological deficits have come to light, with attention to both acute and chronic sequelae of infection. Despite the increasing number of clinical reports outlining neurologic consequences of these diseases, relatively little research has examined underlying mechanisms of neuroinflammation. Animal models of scrub typhus have identified cerebral T-cell infiltration and vascular damage associated with endothelial infection and neuropathogenesis. Differential gene expression analysis of brain tissues during murine scrub typhus have revealed selective increases in CXCR3 ligands, proinflammatory and type-1 cytokines and chemokines, and cytotoxicity molecules, as well as alterations in the complement pathway. In SFR, microglial expansion and macrophage infiltration contribute to neurological disease progression. This narrative Review highlights clinical neurologic features of scrub typhus and SFR and evaluates our current understanding of basic research into neuroinflammation for both diseases in animal models. Further investigation into key mediators of neuropathogenesis may yield prognostic markers and treatment regimens for severe patients.