2011
DOI: 10.1186/1471-2229-11-121
|View full text |Cite
|
Sign up to set email alerts
|

Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

Abstract: BackgroundIn soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation.ResultsRoot exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
66
1
2

Year Published

2013
2013
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 104 publications
(71 citation statements)
references
References 42 publications
2
66
1
2
Order By: Relevance
“…In addition, citramalic acid, which solubilized a small amount of perylene from the soil, has been shown to be present in root exudates of sugar beets and to solubilize soil phosphorus. 17) Again, these findings suggest that citramalic acid also contributes to the solubilization of hydrophobic compounds from the soil and may enhance the uptake of hydrophobic pollutants from the soil by plants.…”
Section: Discussionmentioning
confidence: 91%
“…In addition, citramalic acid, which solubilized a small amount of perylene from the soil, has been shown to be present in root exudates of sugar beets and to solubilize soil phosphorus. 17) Again, these findings suggest that citramalic acid also contributes to the solubilization of hydrophobic compounds from the soil and may enhance the uptake of hydrophobic pollutants from the soil by plants.…”
Section: Discussionmentioning
confidence: 91%
“…), probablemente diferentes fuentes de carbono asociadas a los exudados radiculares podrían tener un efecto significativo sobre la solubilización de fósforo que sucede en la rizósfera (Liebersbach, 2004). Cinco fuentes adicionales de carbono fueron evaluadas, debido al importante papel que juega en la atracción de los microorganismos a la rizósfera (Walker et al, 2003;Khorassani et al, 2011 Cuadro 1, pueden inferir que la solubilización de fósforo por las bacterias en estudio posiblemente fue influenciada por la fuente de carbono presente. Adicionalmente, las cuatro cepas evaluadas respondieron de manera similar con las diferentes fuentes de carbono utilizadas en el presente estudio; la que estimuló en mayor cantidad la solubilización de fósforo fue el ácido málico, seguido por manitol, sacarosa, glucosa, y ácido glutámico.…”
Section: Finally We Used 1) a Principal Component Analysis (Pca)unclassified
“…Probably different carbon sources associated with root exudates it could have a significant effect on the solubilization of phosphorus occurs in the rhizosphere (Liebersbach, 2004). Five additional carbon sources were evaluated, due to the important role in attracting the rhizosphere microorganisms (Walker et al, 2003;Khorassani et al, 2011). The results observed in Table 1, may infer that the solubilization of phosphorus by the bacteria under study was possibly influenced by the carbon source.…”
Section: Finally We Used 1) a Principal Component Analysis (Pca)mentioning
confidence: 99%
“…Thus, the presence of SA in the rhizosphere must be anticipated. Indeed, SA has been detected in root exudates of for example Arabidopsis (Badri et al 2013), sugar beet (Khorassani et al 2011), sunflower (Park et al 1992) and watermelon (Ling et al 2013). It thus appears that studies on SA in rhizosphere microbiology should not be restricted to SA produced by bacteria.…”
Section: Sa Production By Plant Growth Promoting Rhizobacteriamentioning
confidence: 99%