Energy Technology Roll-Out for Climate Change Mitigation: A Multi-Model Study for Latin America van der Zwaan, B.; Kober, T.; Calderon, S. ; Clarke, L.; Daenzer, K. ; Kitous, A.; Labriet, M. ; Lucena, A.F.P.; Octaviano, C.; Di Sbroiavacca, N.
Published in: Energy Economics
DOI:10.1016/j.eneco. 2015.11.019 Link to publication Citation for published version (APA): van der Zwaan, B., Kober, T., Calderon, S., Clarke, L., Daenzer, K., Kitous, A., ... Di Sbroiavacca, N. (2016
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO 2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO 2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO 2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two-to three-fold expansion between 2010 and 2050. We find that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, ...