Purpose
Currently, the significance of CDKN2A/B mutations in the pathogenesis and prognosis of acute lymphoblastic leukemia (ALL) is inconclusive. In this study, we analyzed the genetic and clinical features of children with CDKN2A/B mutations in ALL. In addition, we evaluated the expression and significance of programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) in serum and explored their role in the susceptibility of childhood ALL.
Methods
We sequenced CDKN2A/B in the peripheral blood of 120 children with ALL and 100 healthy children with physical examination. The levels of CD4+ T, CD8+ T, and NK cells were measured by flow cytometry (FCM). Furthermore, the expression of PD-1 and PD-L1 was detected by ELISA.
Results
We found 32 cases of CDKN2A rs3088440 and 11 of CDKN2B rs2069426 in 120 ALL children. Children with ALL in the CDKN2A rs3088440 were more likely to have hepatosplenomegaly (P = 0.019) and high risk (P = 0.014) than the wild group. In contrast, CDKN2B rs2069426 was more likely to develop lymph node metastasis (P = 0.017). The level of PD-L1 in the serum of ALL children was significantly higher than that of the control group, and there was no significant difference in PD-1 (P < 0.001). Additionally, children with CDKN2A rs3088440 had reduced CD8+ T cell counts than the wild group (P = 0.039).
Conclusion
CDKN2A rs3088440 and CDKN2B rs2069426 may be related to the occurrence and development of ALL in Chinese children. Additionally, PD-1/PD-L1 may be involved in the immune escape process of ALL, which is expected to become a new target for the treatment of the disease.