In the field of Scan-to-BIM, recent developments achieve promising results in accuracy and flexibility, leveraging tools from the field of deep learning for semantic segmentation of raw point cloud data. Those methods demand large-scale, domain-specific datasets for training. Promising ideas to fulfill this need use primitive synthetic point cloud data, which predominantly lack distinct point cloud properties, such as missing patches due to occlusions in the scene. To solve this issue, we use a specialized laser scan simulation tool from the domain of Geosciences in a toolchain that allows generating realistic ground truth data based on 3D models. In this context, we introduce a comprehensive taxonomy for the industrial point cloud context. Furthermore, we provide the missing link for a comprehensive, open-source toolchain that is flexible towards any use case in the field.