Directional sensors, if collocated but perpendicularly oriented among themselves, would facilitate signal processing to uncouple the azimuth-polar direction from the time-frequency dimension-in addition to the physical advantage of spatial compactness. One such acoustical sensing unit is the well-known "tri-axial velocity sensor" (also known as the "gradient sensor," the "velocity-sensor triad," the "acoustic vector sensor," and the "vector hydrophone"), which comprises three identical figure-8 sensors of the first directivity-order, collocated spatially but oriented perpendicularly of each other. The directivity of the figure-8 sensors is hypothetically raised to a higher order in this analytical investigation with an innocent hope to sharpen the overall triad's directionality and steerability. Against this wishful aspiration, this paper rigorously analyzes how the directivity-order would affect the triad's "spatial-matched-filter" beam's directional steering capability, revealing which directivity-order(s) would allow the beam-pattern of full maneuverability toward any azimuthal direction and which directivity-order(s) cannot. V