Background
Carbapenemase-producing K. pneumoniae have become a global priority, not least in low-middle income countries. Here, we report the emergence and clinical impact of a novel KPC-K. pneumoniae ST16 clone in a Clonal Complex (CC)258 endemic setting.
Methods
In a teaching Brazilian hospital, a retrospective cohort of adult KPC-KP bloodstream infections (BSI) cases (January 2014 to December 2016) was established to study the molecular epidemiology and its impact on outcome (30-day all-cause mortality). KPC-KP isolates were MLST-typed. Survival analysis between ST/CC groups and risk factors for fatal outcome (logistic regression) were evaluated. Representative isolates underwent whole genome sequencing (WGS), and had their virulence tested in a Galleria larvae model.
Results
One hundred sixty-five unique KPC-KP BSI cases were identified. CC258 was predominant (66%), followed by ST16 (12%). The overall 30-day mortality rate was 60%; in contrast, 95% of ST16 cases were fatal. Patient’s severity scores were high and baseline clinical variables were not statistically different across ST’s. In multivariate analysis, ST16 (OR 21.4; CI95% 2.3-202.8; p=0,008) and septic shock (OR 11.9; CI95% 4.2-34.1; p<0,001) were independent risk factors for fatal outcome. ST16 clone carried up to 14 resistance genes, including blaKPC-2 in an IncFIBpQIL plasmid, KL51 capsule and Yersiniabactin virulence determinants. ST16 clone was highly pathogenic in the larvae model.
Conclusions
Mortality rates were high in this KPC-KP BSI cohort, where CC258 is endemic. An emerging ST16 clone was associated with high mortality. Our results suggest that even in endemic settings, highly virulent clones can rapidly emerge demanding constant monitoring.