Our findings demonstrate that S. aureus can enter the VBNC state in infectious biofilms. The presence of vancomycin or quinupristin/dalfopristin can inadvertently induce a true VBNC state or its persistence in S. aureus cells embedded in biofilms, supporting previous findings on the role of staphylococcal biofilms in recurrent infections.
Streptococcus suis, a major porcine pathogen, is emerging as a zoonotic agent capable of causing severe invasive disease in humans exposed to pigs or pork products. S. suis infection is rare in industrialised countries and usually arises as sporadic cases, with meningitis the most common clinical presentation in humans. Recent reports of two cases of meningitis in Sardinia and northeastern Italy prompted this first characterisation of Italian S. suis isolates. Fifty-nine S. suis strains, the two recent human strains and 57 swine clinical isolates collected between 2003 and 2007 from different Italian herds and regions, were tested for antimicrobial susceptibility, PCR-screened for virulence and antibiotic resistance genes, and subjected to molecular typing. Phenotypic and genotypic analysis demonstrated an overall high genetic diversity among isolates, the majority of which were resistant to macrolides (78%) and tetracyclines (90%). The erm(B), tet(O), mosaic tet(O/W/32/O), tet(W), and tet(M) genes were detected. The tet(O/W/32/O) gene, the most frequent tet gene after tet(O), had never been described in the genus Streptococcus before. In addition, a virulent cps2, erm(B) tet(O) clone, belonging to sequence type 1 (ST1) of the ST1 complex, was found to be prevalent and persistent in Italian swine herds. Finally, the two human isolates (both ST1) carrying cps2, erm(B) and tet(W) were seen to be closely related to each other.
Coagulase-negative staphylococci (CNS) were the first organisms in which acquired glycopeptide resistance was recognized. Ever since the early reports, it has been apparent that resistance to teicoplanin is more common than that to vancomycin and that resistance occurs mostly in species such as Staphylococcus haemolyticus and Staphylococcus epidermidis. The minimum inhibitory concentrations (MICs) of teicoplanin for CNS usually fall over a wide range, and, especially in some methicillin-resistant isolates of the two above-mentioned species, they can reach and even exceed the resistance breakpoint, whereas vancomycin MICs tend to remain more stable over a narrower range within the limits of susceptibility. CNS strains intermediately susceptible and even resistant not only to teicoplanin but also to vancomycin have, however, been isolated, most frequently from patients subjected to prolonged glycopeptide treatment. Laboratory detection of glycopeptide-resistant CNS may be problematic, mainly because susceptibility tests, particularly those for teicoplanin, are influenced by various technical factors, and agar diffusion tests may yield false susceptibility data. In studies with experimental glycopeptides, some molecules have exhibited improved in vitro activity compared with teicoplanin and vancomycin, but these encouraging microbiological findings have not usually been followed by in vivo trials. Stepwise and single-step exposure to teicoplanin and vancomycin has allowed stable clones for which glycopeptide MICs are increased to be obtained from susceptible CNS strains, particularly strains of Staphylococcus haemolyticus and Staphylococcus epidermidis. In these studies, resistance to teicoplanin was generally easier to obtain than resistance to vancomycin, and the levels of teicoplanin resistance were higher. Population studies have demonstrated the usually heterogeneous nature of glycopeptide resistance in CNS. Although glycopeptide-resistant CNS have been shown to differ in several features from their glycopeptide-susceptible counterparts, the exact mechanism of staphylococcal glycopeptide resistance remains unknown.
Φm46.1, the recognized representative of the most common variant of mobile, prophage-associated genetic elements carrying resistance genes mef(A) (which confers efflux-mediated erythromycin resistance) and tet(O) (which confers tetracycline resistance) in Streptococcus pyogenes, was fully characterized. Sequencing of the Φm46.1 genome (55,172 bp) demonstrated a modular organization typical of tailed bacteriophages. Electron microscopic analysis of mitomycin-induced Φm46.1 revealed phage particles with the distinctive icosahedral head and tail morphology of the Siphoviridae family. The chromosome integration site was within a 23S rRNA uracil methyltransferase gene. BLASTP analysis revealed that the proteins of Φm46.1 had high levels of amino acid sequence similarity to the amino acid sequences of proteins from other prophages, especially Φ10394.4 of S. pyogenes and λSa04 of S. agalactiae. Phage DNA was present in the host cell both as a prophage and as free circular DNA. The lysogeny module appears to have been split due to the insertion of a segment containing tet(O) (from integrated conjugative element 2096-RD.2) and mef(A) (from a Tn1207.1-like transposon) into the unintegrated phage DNA. The phage attachment sequence lies in the region between tet(O) and mef(A) in the unintegrated form. Thus, whereas in this form tet(O) is ∼5.5 kb upstream of mef(A), in the integrated form, tet(O), which lies close to the right end of the prophage, is ∼46.3 kb downstream of mef(A), which lies close to the left end of the prophage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.