In our Petawatt laser experiments several hundred joules of 1 µm laser light in 0.5-5.0 ps pulses with intensities up to 3x10 20 Wcm -2 were incident on solid targets producing a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations were diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. From the beamed bremsstrahlung we infer that about 40-50% of the laser energy is converted to broadly beamed hot electrons. Their direction centroid varies from shot to shot, but the beam has a consistent width. Extraordinarily luminous ion beams almost precisely normal to the rear of various targets are seen -up to 3x10 13 protons with kT ion ~ several MeV representing ~6% of the laser energy.We observe ion energies up to at least 55 MeV. The ions appear to originate from the rear target surfaces.The edge of the ion beam is very sharp, and collimation increases with ion energy. At the highest energies, a narrow feature appears in the ion spectra, and the apparent size of the emitting spot is smaller than the full back surface area. Any ion emission from the front of the targets is much less than from the rear and is not sharply beamed. The hot electrons generate a Debye sheath with electrostatic fields of order MV per micron which apparently accelerate the ions.