“…[8][9][10] Magnetic interactions control the properties of sufficiently dense assemblies of magnetic nanoparticles and nanostructures, tailoring their functional properties, e.g., blocking (or freezing) temperature, coercivity, remanent magnetization, switching-field distribution and effective anisotropy, among others. [11][12][13][14][15][16] In fact, interactions are the basis of a large number of nanoparticle-based magnetic materials, e.g., superferromagnets, superspin glasses, artificial spin ice, long range self-assemblies, or ferrofluids. 15,[17][18][19][20][21] Given the crucial importance of interactions in magnetic nanostructures, many direct and indirect approaches have been used to try to quantify them: first order reversal curve (FORC) analysis, 22,23 small angle neutron scattering, SANS, [24][25][26][27] electron holography, 28,29 magnetic force microscopy, 30,31 Lorentz microscopy, 32 Brillouin light scattering, 33 resonant magnetic x-ray scattering 34 and so on.…”