Persistent microbial infection and decreased neovascularization are common issues associated with diabetic wound treatment. Hydrogel dressings that offer intrinsic antibacterial and angiogenesis-inducing may substantially avoid the use of antibiotics or angiogenic agents. Herein, a versatile hydrogel is fabricated using an amyloid-derived toxin simulant (Fmoc-LFKFFK-NH 2 , FLN) as building blocks, inspired by the defense strategy of Staphylococcus aureus (S. aureus). The simulant assemblies of the hydrogel function as both matrix components and functional elements for diabetic wound treatment. The hydrogel undergoes quick assembly from random monomers to nanofibrils with abundant b-sheet driven by multiple non-covalent interactions. The developed hydrogel demonstrates excellent biocompatibility and accelerates angiogenesis via hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) signaling as a consequence of its amyloidal structure. The simulant-based nanofibrils endow the hydrogel with broad-spectrum antibacterial activity dominated by a membrane-disruption mechanism. In addition, the hydrogel exhibits excellent performance compared with the commercial hydrogel Prontosan in accelerating wound healing of diabetic mice infected with methicillinresistant S. aureus (MRSA). This study highlights the fabrication of a single component and versatile hydrogel platform, thereby avoiding the drugrelated side effects and complicated preparations and demonstrating its profound potential as a clinical dressing for the manage ment of microbeinfected diabetic wounds.