Oral health is a window to a patient’s general well-being. Balance in oral microbiome functions is crucial for health maintenance. A state of oral dysbiosis may lead to a variety of local and systemic pathological conditions. The presence of dental plaque is related to the majority of oral infections. Proper oral hygiene is crucial and the most economic practice contributing to oral health prophylaxis. Aside from prophylactic treatments provided by dental practitioners, mouth rinses, containing antimicrobial agents, are one of the possible tools used for oral care. Our study was to determine whether available mouth rinses and selected products dedicated for professional use are efficient to eradicate biofilm formed by reference and clinical strains of Streptococcus mutans, Streptococcus sanguinis, Streptococcus oralis, Streptococcus mitis, Staphylococcus aureus, Enterococcus faecalis, Lactobacillus rhamnosus and Candida albicans on the surface of hydroxyapatite – major mineral component of a tooth. Therefore, such antimicrobials as chlorhexidine, cetylpyridine chloride, polyhexanide, silver nanoparticles, sulphonated phenolics, and natural antiplaque essential oils and coconut oil were analyzed. Applied experimental settings in in vitro models were designed to reflect accurately the recommended use of the tested substances, therefore four types of eradication procedure were conducted. Sialorrhea simulation was also performed to evaluate antibiofilm potential of diluted mouth rinses. Biofilm was investigated with quantitative method where absorbance values were measured. Statistical differences were assessed using the Kruskal–Wallis test with a post-hoc Dunnett’s analysis. Results have shown that biofilms displayed a diversified sensitivity to the tested antimicrobials. The highest antibiofilm activity was detected for cetylpyridine chloride while the lowest for chlorhexidine. However the differences in E. faecalis biofilm reduction observed after the use of these two compounds were not statistically significant (p > 0.05), whereas all observed differences in S. aureus survival after exposure to the examined antimicrobial agents were statistically significant (p < 0.5). The PHMB, both in standard and in sialorrhea simulated conditions had the highest potential against streptococci. The coconut oil reduced C. albicans fungus biofilm by 65.48% but low eradication level was observed in case of bacterial biofilms. The dehydrating mechanism of action of sulfonated phenolics turned out to be ineffective against streptococcal biofilm which in turn was effectively eradicated by silver nanoparticles. The implementation of Antibiofilm Dressing's Activity Measurement method allowed to observe strain-related differences in terms of antimicrobial sensitivity. The obtained results may be introduced in everyday out-patient dental plaque prophylaxis as well as clinical environment.