The pervasive nature of perfluoroalkyl chemicals in the environment has generated considerable interest for developing new strategies for risk assessment. In experimental animal models, exposure to perfluoroalkyl chemicals can cause developmental toxicity and hepatotoxicity. Peroxisome proliferator-activated receptor-α (PPARα) is required to mediate some but not all of these effects. Since PPARα has a role in mediating some of these effects, and there is some overlap in the type of toxicities elicited by perfluoroalkyl chemicals, it has been suggested that a scaling system analogous to the toxic equivalency factor (TEF) system used for polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and polychlorinated biphenyls (PCB) could be used for perfluoroalkyl chemicals. However, evidence suggests that perfluoroalkyl chemicals can activate/interfere with other receptors, and there is reason to suggest the possibility of species differences in the response mediated by different receptors as well as qualitative differences in toxicities elicited by perfluoroalkyl chemicals. These differences and other data gaps preclude the development of a TEF approach for perfluoroalkyl chemicals.