Abstract
BACKGROUND: Periprosthetic joint infection (PJI) is a devastating complication of joint arthroplasty. The identification of microorganisms in biofilm-related PJI is challenging yet significant stage of the treatment process. Medical microbiology methods, such as pure culture isolation, remain the gold standard. However, the error rate of classical methods may vary from 10% to as high as 42% due to the inability to detect bacteria growing within biofilms. Other methods of detection are being explored to improve the management of PJI.
AIM: Accurate identification of PJI contributing microorganisms in a patient with acute postoperative PJI after total hip joint arthroplasty and systemic lupus erythematosus in anamnesis.
METHODS: We used microbial culture methods followed by scanning electron microscopy (SEM).
RESULTS: Perioperative an intraoperative cultural analysis of 8 different culture samples of tissue and prosthetic origin was insufficient for bacterial or fungal detection. Scanning electron microscopy revealed detailed biofilm visualisation on the surface of the prosthetic component. The biofilm exterior was composed of microbial clusters made of 10 or more cells with either pear- or bottle-shaped morphology, 3-6 mcm in length and 1.5-3 mcm in diameter. Rod-shaped microorganisms of 0.7-1 mcm length and up to 0.5 mcm in diameter were found adjacent to these clusters.
CONCLUSION: Additional methods for PJI agents’ detection are time-and cost-effective in the case of the challenging diagnostics of biofilm-related PJI, particularly in immunocompromised patients. Using combined diagnostic approaches increases the accuracy of detection, justifies treatment strategies and improves clinical outcomes.