The effect of pressure on the flame’s physical structure and soot formation of the coflow propane—air laminar diffusion flames was studied experimentally at subatmospheric pressures from 30 to 101 kPa. Flames with a constant fuel mass flow rate combined with two different coflow air mass flow rates were investigated at different pressures. The spatially resolved relative soot volume fraction was measured using the laser-induced incandescence (LII) method. The height of the visible flame decreased moderately as the pressure (p) reduced from 101 to 30 kPa. The maximum flame diameter increased proportionally to pn , where the exponent changed from −0.4 to −0.52 as the air-to-fuel velocity ratio decreased from 1.0 to 0.5. Strong pressure dependence of the maximum relative soot volume fraction and the normalized maximum soot mass flow were observed and could be described by a power law relationship. However, a nonmonotonic dependence of soot formation on the air-to-fuel velocity ratio was observed at all the considered pressures.