To address three important issues related to extraction of water features from Landsat imagery, i.e., selection of water indexes and classification algorithms for image classification, collection of ground truth data for accuracy assessment, this study applied four sets (ultra-blue, blue, green, and red light based) of water indexes (NWDI, MNDWI, MNDWI2, AWEIns, and AWEIs) combined with three types of image classification methods (zero-water index threshold, Otsu, and kNN) to 24 selected lakes across the globe to extract water features from Landsat-8 OLI imagery. 1440 (4x5x3x24) image classification results were compared with the extracted water features from high resolution Google Earth images with the same (or ±1 day) acquisition dates through computing the Kappa coefficients. Results show the kNN method is better than the Otsu method, and the Otsu method is better than the zero-water index threshold method. If the computational cost is not an issue, the kNN method combined with the ultra-blue light based AWEIns is the best method for extracting water features from Landsat imagery because it produced the highest Kappa coefficients. If the computational cost is taken into account, the Otsu method is a good choice. AWEIns and AWEIs are better than NDWI, MNDWI and MNDWI2. AWEIns works better than AWEIs under the Otsu method, and the average rank of the image classification accuracy from high to low is the ultra-blue, blue, green, and red light-based AWEIns.