The objective of this study was to evaluate growth and attachment of human gingival fibroblasts on nonresorbable sol-gel-derived nanoporous titania (TiO2) coated discs and noncoated commercially pure titania (cpTi) discs in vitro. The strength of attachment was evaluated using serial trypsinization. The number of cells detached from TiO2-substrates was 30% +/- 3%, whereas those detached from the cpTi was 58% +/- 4% indicating a stronger cell attachment on the coated surfaces. In scanning electron microscopy (SEM) images fewer cells, with more rounded shape, were seen with cpTi than with TiO2 after the detachment assay. Fibroblasts grew more efficiently on TiO2 than on cpTi substrates, showing significantly higher cell activities at all times. In transmission electron microscopy (TEM), a continuous layer of two to three cells thick covered the coated and noncoated discs after 7 days of culture. The plasma membrane of cells in contact with the coating was in close opposition and the cytoplasm was ultrastructurally similar to the cells grown on noncoated discs with well-preserved organelles. In conclusion, we demonstrated that the sol-gel-derived TiO2 coatings can facilitate cell growth and attachment of human gingival fibroblasts on titanium in vitro. This in vitro study is in line with our previous in vivo observations of improved soft tissue attachment of TiO2 coatings in comparison with cpTi.