2010
DOI: 10.5802/jtnb.731
|View full text |Cite
|
Sign up to set email alerts
|

Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber

Abstract: On montre que le morphisme canonique ϕ : π 1 (X η , x η ) → π 1 (X, x) η entre le schéma en groupes fondamental de la fibre générique X η d'un schéma X sur un schéma de Dedekind connexe et la fibre générique du schéma en groupes fondamental de X est toujours fidèlement plat. On donnera ensuite des conditions nécessaires et suffisantes pour qu'un G-torseur fini, dominé et pointé au dessus de X η puisse être étendu sur X. On décrira des exemples où ϕ : π 1 (X η , x η ) → π 1 (X, x) η est un isomorphisme.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0

Year Published

2011
2011
2012
2012

Publication Types

Select...
4
1

Relationship

5
0

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 12 publications
0
8
0
Order By: Relevance
“…By a quotient pointed G-torsor q : Y → X η we mean a pointed torsor whose associated morphism π 1 (X η , x η ) → G is faithfully flat. Using standard techniques (cf., for instance, [2], lemma 2.7) we are able to prove the following Theorem 3.10: Let G be a finite and commutative K-group scheme. Then every quotient pointed G-torsor q : Y → X η can be extended to a pointed Gtorsor Z → X for some (necessarily commutative) model G of G finite and flat over S.…”
Section: 3mentioning
confidence: 96%
See 2 more Smart Citations
“…By a quotient pointed G-torsor q : Y → X η we mean a pointed torsor whose associated morphism π 1 (X η , x η ) → G is faithfully flat. Using standard techniques (cf., for instance, [2], lemma 2.7) we are able to prove the following Theorem 3.10: Let G be a finite and commutative K-group scheme. Then every quotient pointed G-torsor q : Y → X η can be extended to a pointed Gtorsor Z → X for some (necessarily commutative) model G of G finite and flat over S.…”
Section: 3mentioning
confidence: 96%
“…We already know that if X is an abelian scheme, every (necessarily) commutative quotient (i.e., the group scheme acting on it is a quotient of the fundamental group scheme of X η ) pointed torsor over X η can be extended to X (cf. [2], §3.2). Tossici recently proved in [27], Corollary 4.9 that if S = Spec(R), where R is a d.v.r.…”
Section: Introductionmentioning
confidence: 95%
See 1 more Smart Citation
“…Now it is easy to find an R-model H of G (commutative, finite and flat) and a pointed (over 0 NJ ) H-torsor Y → N J whose generic fiber is isomorphic to T → J (cf. for instance [2], §2.2). Then finally Y ′ := Y × NJ X, the pull back over u ′ , is a finite, commutative H-torsor over X (pointed over x) extending T ′ → X η .…”
Section: Commutative Torsorsmentioning
confidence: 99%
“…A pointed torsor (Y , G, y) is a quotient torsor if and only if G is a quotient of the fundamental group scheme π 1 (X, x), that is the canonical morphism π 1 (X, x) → G is faithfully flat (cf. for instance [1], Corollary 2.8).…”
Section: The Fundamental Group Schemementioning
confidence: 99%