The aim of this study was to develop a nanoparticle-based cell capture system combined with a lateral flow test strip (LFT) assay for rapid detection of Campylobacter jejuni from poultry samples. The developed assay was bench-marked against the standard modified Charcoal Cefoperazone Deoxycholate Agar (mCCDA) method according to ISO16140:2003 procedures. The synthesized ferromagnetic nanoparticles (FMNs) were modified with glutaraldehyde, then functionalized with polyclonal antibodies for specific C. jejuni capture and concentration from poultry samples. After lysing captured cells, DNA from C. jejuni was amplified by PCR using the primers designed to target the hipO gene, and the PCR amplicons were detected with the lateral flow test strip assay. Following the ISO16140:2003 guidelines, the relative detection limit, and the inclusivity and exclusivity tests were determined. The results showed that the limit of detection (LOD) of the assay was 10 or 1 cfu/ml with C. jejuni in pure culture and 10-10 cfu/ml with target cells spiked in poultry sample. In addition, the inclusivity and exclusivity tests were found to be 100%. Using field chicken samples (n = 60), the assay showed relative accuracy, relative specificity, and relative sensitivity of 96.67%, 100% and 93.33%, respectively. The positive predictive values (PPV) and negative predictive values (NPV), and the kappa index of concordance (k) were calculated as 100% and 93.75%, and 0.93, respectively. The developed assay required approximately 3 h to complete and gave results comparable to those analyzed by the standard culture method, which required 5-7 days. The assay is rapid, easy-to-use, and has potential to be directly applied to C. jejuni detection in various categories of poultry samples.