The main objective of the current research is the development of a new mathematical model for the prediction of compression pressure based on the incorporation of some new parameters. These new parameters include deformed width (wf), true stress ([Formula: see text]), true/logarithm strain ([Formula: see text]), true modulus of elasticity ([Formula: see text]), along with measurement of engineering stress ([Formula: see text]), engineering strain ([Formula: see text]) and engineering modulus of elasticity ([Formula: see text]) at ankle position. Various brands of compression socks comprising similar fibrous combinations, as well as knit type, were purchased. Initially they were hand washed, put on the leg for marking, marked in a square, sliced, and cut into rectangular strips. The rectangular cut strips were evaluated for force–elongation characterization at different strain values considering the requisite practical elongation values (circumferential difference between leg and sock at ankle portion). For pressure measurement, a Salzmann MST MK IV pressure measuring device using a standard-sized wooden leg (circumference = 240 mm) was used. For tensile evaluation, a Testometric tensile tester was used. In this research we developed the two mathematical models based on true Young’s modulus and engineering Young’s modulus were compared with Hooke’s law and Laplace’s law. The developed models were also compared with previously existing models statistically.