Unmanned aerial vehicles (UAVs) are increasingly being integrated into the domain of precision agriculture, revolutionizing the agricultural landscape. Specifically, UAVs are being used in conjunction with machine learning techniques to solve a variety of complex agricultural problems. This paper provides a careful survey of more than 70 studies that have applied machine learning techniques utilizing UAV imagery to solve agricultural problems. The survey examines the models employed, their applications, and their performance, spanning a wide range of agricultural tasks, including crop classification, crop and weed detection, cropland mapping, and field segmentation. Comparisons are made among supervised, semi-supervised, and unsupervised machine learning approaches, including traditional machine learning classifiers, convolutional neural networks (CNNs), single-stage detectors, two-stage detectors, and transformers. Lastly, future advancements and prospects for UAV utilization in precision agriculture are highlighted and discussed. The general findings of the paper demonstrate that, for simple classification problems, traditional machine learning techniques, CNNs, and transformers can be used, with CNNs being the optimal choice. For segmentation tasks, UNETs are by far the preferred approach. For detection tasks, two-stage detectors delivered the best performance. On the other hand, for dataset augmentation and enhancement, generative adversarial networks (GANs) were the most popular choice.