We obtain the exact time evolution for the one-dimensional integrable fermionic 1/r Hubbard model after a sudden change of its interaction parameter, starting from either a metallic or a Mottinsulating eigenstate. In all cases the system relaxes to a new steady state, showing that the presence of the Mott gap does not inhibit relaxation. The properties of the final state are described by a generalized Gibbs ensemble. We discuss under which conditions such ensembles provide the correct statistical description of isolated integrable systems in general. We find that generalized Gibbs ensembles do predict the properties of the steady state correctly, provided that the observables or initial states are sufficiently uncorrelated in terms of the constants of motion.