With the surge of COVID-19 pandemic, the world is moving towards digitization and automation more than it was presumed. The Internet is becoming one of the popular mediums for communication, and multimedia (image, audio, and video) combined with data compression techniques play a pivotal role in handling a huge volume of data that is being generated on a daily basis. Developing novel algorithms for automatic analysis of compressed data without decompression is the need of the present hour. JPEG is a popular compression algorithm supported in the digital electronics world that achieves compression by dividing the whole image into non-overlapping blocks of 8 × 8 pixels, and subsequently transforming each block using Discrete Cosine Transform (DCT). This research paper proposes to carry out Fast and Smooth Segmentation (FastSS) directly in JPEG compressed printed text document images at text-line and word-level using DC and AC signals. From each 8 × 8 block, DC and AC signals are analyzed for accomplishing Fast and Smooth segmentation, and subsequently, two Faster segmentation (MFastSS) algorithms are also devised using low resolution-images generated by mapping the DC signal (DC Reduced Image) and encoded DCT (ECM Image) coefficients separately. Proposed models are tested on various JPEG compressed printed text document images created with varied space and fonts. The experimental results have demonstrated that the direct analysis of compressed streams is computationally efficient, and has achieved speed gain more than 90% when compared to uncompressed domains.