Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Motivated by the success of the serial dictatorship mechanism in social choice settings, we explore its usefulness in tackling various combinatorial optimization problems. We do so by considering an abstract model, in which a set of agents are asked to act in a particular ordering, called the action sequence. Each agent acts in a way that gives her the maximum possible value, given the actions of the agents who preceded her in the action sequence. Our goal is to compute action sequences that yield approximately optimal total value to the agents (a.k.a., social welfare). We assume query access to the value $$v_i(S)$$ v i ( S ) that the agent i gets when she acts after the agents in the ordered set S. We establish tight bounds on the social welfare that can be achieved using polynomially many queries. Even though these bounds show a marginally sublinear approximation of optimal social welfare in general, excellent approximations can be obtained when the valuations stem from an underlying combinatorial domain. Indicatively, when the valuations are defined using bipartite matchings, arborescences in directed graphs, and satisfiability of Boolean expressions, simple query-efficient algorithms yield 2-approximations. We discuss issues related to truthfulness and show how some of our algorithms can be implemented truthfully using VCG-like payments. Finally, we introduce and study the price of serial dictatorship, a notion that provides an optimistic measure of the quality of combinatorial optimization solutions generated by action sequences.
Motivated by the success of the serial dictatorship mechanism in social choice settings, we explore its usefulness in tackling various combinatorial optimization problems. We do so by considering an abstract model, in which a set of agents are asked to act in a particular ordering, called the action sequence. Each agent acts in a way that gives her the maximum possible value, given the actions of the agents who preceded her in the action sequence. Our goal is to compute action sequences that yield approximately optimal total value to the agents (a.k.a., social welfare). We assume query access to the value $$v_i(S)$$ v i ( S ) that the agent i gets when she acts after the agents in the ordered set S. We establish tight bounds on the social welfare that can be achieved using polynomially many queries. Even though these bounds show a marginally sublinear approximation of optimal social welfare in general, excellent approximations can be obtained when the valuations stem from an underlying combinatorial domain. Indicatively, when the valuations are defined using bipartite matchings, arborescences in directed graphs, and satisfiability of Boolean expressions, simple query-efficient algorithms yield 2-approximations. We discuss issues related to truthfulness and show how some of our algorithms can be implemented truthfully using VCG-like payments. Finally, we introduce and study the price of serial dictatorship, a notion that provides an optimistic measure of the quality of combinatorial optimization solutions generated by action sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.