We propose a Multi-task learning approach for Abstractive Text Summarization (MATS), motivated by the fact that humans have no difficulty performing such task because they have the capabilities of multiple domains. Specifically, MATS consists of three components: (i) a text categorization model that learns rich category-specific text representations using a bi-LSTM encoder; (ii) a syntax labeling model that learns to improve the syntax-aware LSTM decoder; and (iii) an abstractive text summarization model that shares its encoder and decoder with the text categorization and the syntax labeling tasks, respectively. In particular, the abstractive text summarization model enjoys significant benefit from the additional text categorization and syntax knowledge. Our experimental results show that MATS outperforms the competitors.1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.