We can often detect from a person's utterances whether he/she is in favor of or against a given target entitytheir stance towards the target. However, a person may express the same stance towards a target by using negative or positive language. Here for the first time we present a dataset of tweet-target pairs annotated for both stance and sentiment. The targets may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. Partitions of this dataset were used as training and test sets in a SemEval-2016 shared task competition. We propose a simple stance detection system that outperforms submissions from all 19 teams that participated in the shared task. Additionally, access to both stance and sentiment annotations allows us to explore several research questions. We show that while knowing the sentiment expressed by a tweet is beneficial for stance classification, it alone is not sufficient. Finally, we use additional unlabeled data through distant supervision techniques and word embeddings to further improve stance classification.